samedi, novembre 1, 2025
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
Démystification des métaux étranges : Une théorie universelle voit le jour

Démystification des métaux étranges : Une théorie universelle voit le jour

par La rédaction
20 août 2023
en Quantique, Technologie

Le monde de la physique quantique s’est longtemps confronté à un mystère persistant concernant les « métaux étranges ». Aujourd’hui, un nouvel éclairage se profile, offrant une perspective inattendue et innovante sur ces matériaux singuliers.

Le Center for Computational Quantum Physics (CCQ) du Flatiron Institute à New York, sous la direction d’Aavishkar Patel, a mis en lumière un mécanisme éclaircissant les propriétés distinctives des métaux étranges.

Dans une publication datant du 18 août dans la revue Science, Patel et son équipe dévoilent leur théorie universelle sur ces métaux atypiques, apportant une réponse à l’un des plus grands défis de la physique de la matière condensée.

Le comportement étrange des métaux se retrouve dans de nombreux matériaux quantiques, y compris certains qui, moyennant de petites modifications, peuvent devenir des supraconducteurs (matériaux dans lesquels les électrons circulent avec une résistance nulle à des températures suffisamment basses). Cette relation suggère que la compréhension des métaux étranges pourrait aider les chercheurs à identifier de nouveaux types de supraconductivité.

Les spécificités des métaux étranges

La nouvelle théorie démontre pourquoi la résistivité électrique de ces métaux est proportionnelle à la température, même à des températures extrêmement basses. Ainsi, ces métaux résistent davantage à l’électron que les métaux conventionnels comme l’or ou le cuivre à température égale.

La nouvelle théorie repose sur la combinaison de deux propriétés des métaux étranges. Premièrement, leurs électrons peuvent s’enchevêtrer les uns dans les autres par la mécanique quantique, liant ainsi leurs destins, et ils restent enchevêtrés même lorsqu’ils sont séparés à distance. Deuxièmement, les métaux étranges présentent une disposition non uniforme des atomes, semblable à un patchwork.

« Cette interaction entre l’entrelacement et la non-uniformité est un phénomène inédit ; jamais considéré auparavant pour aucun matériau », précise Aavishkar Patel. Ce dernier ajoute que ce simple constat démontre que la complexité autrefois attribuée aux métaux étranges était mal orientée.

« Aucune de ces propriétés n’explique à elle seule les bizarreries des métaux étranges, mais si on les combine, ‘tout se met en place’, ajoute A. Patel. « L’irrégularité de la disposition atomique d’un métal étrange signifie que les enchevêtrements d’électrons varient en fonction de l’endroit du matériau où l’enchevêtrement a eu lieu. Cette variété ajoute un caractère aléatoire à l’élan des électrons lorsqu’ils se déplacent dans le matériau et interagissent les uns avec les autres. Au lieu de circuler tous ensemble, les électrons s’entrechoquent dans toutes les directions, ce qui entraîne une résistance électrique. Comme les électrons se heurtent plus fréquemment au fur et à mesure que le matériau s’échauffe, la résistance électrique augmente en même temps que la température.« 

Lucy Reading-Ikkanda/Simons Foundation

Applications futures

Aavishkar Patel évoque que la compréhension approfondie des métaux étranges pourrait potentiellement conduire à la création de nouveaux supraconducteurs pour des applications telles que les ordinateurs quantiques.

« Il y a des cas où quelque chose veut devenir supraconducteur mais n’y parvient pas tout à fait, parce que la supraconductivité est bloquée par un autre état concurrent« , explique-t-il. « On peut alors se demander si la présence de ces non-uniformités peut détruire ces autres états avec lesquels la supraconductivité est en concurrence et laisser la voie libre à la supraconductivité. »

Il suggère également que l’appellation « métaux étranges » pourrait être revisitée pour mieux correspondre à leur nouvelle compréhension : « Je préférerais les appeler métaux inhabituels désormais ».

En synthèse

La découverte du Flatiron Institute sur les métaux étranges offre un nouvel horizon dans le domaine de la physique quantique. Cette étude éclaire d’une manière innovante les propriétés et potentiels d’applications de ces matériaux, redéfinissant ainsi leur place dans le monde scientifique.

Pour une meilleure compréhension

1. Qu’est-ce qu’un métal étrange ?

Un métal étrange est un matériau qui a intrigué les physiciens quantiques pendant des décennies car il opère en dehors des règles conventionnelles de l’électricité. Ces métaux présentent des propriétés uniques, notamment en ce qui concerne la résistivité électrique.

Articles à explorer

Lasers rouges sur puces de silicium révolutionnent les technologies quantiques et de détection

Les lasers rouges sur puces de silicium révolutionnent les technologies quantiques et de détection

30 octobre 2025
Un cristal courant s'avère idéal pour les technologies lumineuses à basse température

Un cristal courant s’avère idéal pour les technologies lumineuses à basse température

30 octobre 2025

2. En quoi les métaux étranges diffèrent-ils des métaux traditionnels ?

La principale différence réside dans la manière dont la résistivité électrique change en fonction de la température. Dans les métaux étranges, cette résistivité est directement proportionnelle à la température, même à des niveaux très bas, ce qui n’est pas observé dans les métaux comme l’or ou le cuivre.

3. Quelle est la principale découverte concernant les métaux étranges ?

La nouvelle théorie montre que le comportement unique des métaux étranges résulte de l’interaction entre l’entrelacement quantique des électrons et une disposition atomique irrégulière et non uniforme.

4. Qui est à l’origine de cette découverte ?

C’est l’équipe dirigée par Aavishkar Patel au Flatiron Institute’s Center for Computational Quantum Physics à New York qui est à l’origine de cette découverte majeure.

5. Pourquoi cette découverte est-elle importante pour la physique quantique ?

La compréhension des métaux étranges peut potentiellement mener à la création de nouveaux supraconducteurs et d’autres avancées dans le domaine de la technologie quantique. Cette découverte aide à éclairer l’un des plus grands mystères de la physique de la matière condensée.

6. Quelles sont les applications potentielles de cette découverte ?

Outre la possibilité de développer de nouveaux supraconducteurs, cette découverte pourrait avoir des implications dans le développement d’ordinateurs quantiques et d’autres technologies de pointe basées sur les propriétés quantiques.

7. Le nom « métaux étranges » sera-t-il toujours utilisé après cette découverte ?

Alors que les « métaux étranges » sont maintenant mieux compris, Aavishkar Patel suggère qu’il serait plus approprié de les appeler « métaux inhabituels » à l’avenir.

8. Qui sont les co-auteurs de l’étude ?

Outre Aavishkar Patel du Flatiron Institute, l’étude a été co-rédigée par Haoyu Guo, Ilya Esterlis et Subir Sachdev de l’Université de Harvard.

9. Où peut-on consulter cette étude ?

L’étude a été publiée dans le numéro du 18 août de la revue Science. Elle est accessible en ligne pour ceux qui ont un abonnement ou peuvent obtenir un accès à cette publication spécifique.

10. Quelle sera la prochaine étape après cette découverte ?

Bien que l’étude ait apporté des éclaircissements majeurs, il reste encore des domaines à explorer, notamment la manière dont cette compréhension peut être appliquée pour développer de nouvelles technologies ou mieux comprendre d’autres matériaux quantiques.

Légende illustration principale : Une nouvelle théorie explique le comportement inhabituel des métaux étranges, considérés comme l’un des plus grands défis de la physique de la matière condensée. Cette théorie repose sur deux propriétés des métaux étranges. Premièrement, leurs électrons peuvent s’enchevêtrer les uns dans les autres par la mécanique quantique, liant ainsi leurs destins, et ils restent enchevêtrés même lorsqu’ils sont séparés à distance. Deuxièmement, les métaux étranges ont une disposition non uniforme des atomes. Credit : Lucy Reading-Ikkanda/Simons Foundation

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: materiauxordinateurquantiquesupraconducteur
Article précédent

La nouvelle étude qui décode le chaos : 3 ans d’exploration et un résultat surprenant

Article suivant

L’électronique comestible : un marché potentiel de plusieurs milliards ?

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Première preuve d'une accélération non gravitationnelle de l'objet interstellaire 3I/ATLAS ?
Recherche

Première preuve d’une accélération non gravitationnelle de l’objet interstellaire 3I/ATLAS ?

il y a 12 heures
L’impact des réseaux sociaux sur notre perception de l’information
Communication

L’impact des réseaux sociaux sur notre perception de l’information

il y a 14 heures
L'ingénierie au service de l'expresso : un robot barista lancé dans une université écossaise
Robotique

L’ingénierie au service de l’expresso : un robot barista lancé dans une université écossaise

il y a 15 heures
La DARPA veut créer des intelligences artificielles moins gourmandes en électricité
Industrie militaire

L’armée américaine veut créer des intelligences artificielles économes

il y a 18 heures
Une simple solution de stabilisation permet de créer sept nouveaux matériaux céramiques
Matériaux

Une simple solution de stabilisation permet de créer sept nouveaux matériaux céramiques

il y a 19 heures
Des chercheurs japonais créent des diamants avec des électrons
Recherche

Des chercheurs japonais créent des diamants avec des électrons

il y a 1 jour
Plus d'articles
Article suivant
L'électronique comestible : un marché potentiel de plusieurs milliards ?

L'électronique comestible : un marché potentiel de plusieurs milliards ?

Paris est une des pires villes européennes en temps de canicule. Comment changer cela ?

Paris est une des pires villes européennes en temps de canicule. Comment changer cela ?

Comment la voiture modulaire pourrait bouleverser l'industrie automobile

Comment la voiture modulaire pourrait bouleverser l'industrie automobile

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

Première preuve d'une accélération non gravitationnelle de l'objet interstellaire 3I/ATLAS ?

Première preuve d’une accélération non gravitationnelle de l’objet interstellaire 3I/ATLAS ?

31 octobre 2025
L’impact des réseaux sociaux sur notre perception de l’information

L’impact des réseaux sociaux sur notre perception de l’information

31 octobre 2025
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com