Une équipe de chercheurs canadiens a fait des progrès considérables dans la compréhension de l’ionisation des atomes et des molécules, un processus fondamental de la physique qui a des implications dans divers domaines, notamment la production de rayons X et la physique des plasmas.
Pensez aux atomes – les éléments constitutifs de tout ce qui nous entoure. Parfois, ils perdent leurs électrons et deviennent des particules chargées (c’est l’ionisation). Cela se produit dans les éclairs, dans les téléviseurs à plasma et même dans les aurores boréales. Jusqu’à présent, les scientifiques pensaient ne pouvoir contrôler ce processus que de manière limitée.
Dirigée par Ravi Bhardwaj, professeur titulaire au Département de physique de l’Université d’Ottawa, et Jean-Luc Begin, étudiant au doctorat, en collaboration avec les professeurs Ebrahim Karimi, Paul Corkum et Thomas Brabec, cette recherche présente des méthodes novatrices pour contrôler l’ionisation à l’aide de faisceaux lumineux spécialement structurés.
L’ionisation est cruciale pour la physique des champs forts et la science de l’attoseconde, où elle décrit comment les électrons s’échappent de leurs liaisons atomiques. Traditionnellement, on pensait que ce processus ne pouvait pas être manipulé au-delà de certaines limites. Toutefois, cette nouvelle étude remet en question cette notion.
« Nous avons démontré qu’en utilisant des faisceaux de vortex optiques – des faisceaux de lumière qui portent un moment angulaire – nous pouvons contrôler avec précision la manière dont un électron est éjecté d’un atome », précise le professeur Bhardwaj. « Cette découverte ouvre de nouvelles possibilités pour améliorer la technologie dans des domaines tels que l’imagerie et l’accélération des particules. »
La recherche s’est déroulée sur deux ans au Complexe de recherche avancée de l’Université d’Ottawa. L’équipe a découvert que l’orientation et les propriétés des faisceaux de vortex optiques influent considérablement sur les taux d’ionisation. En ajustant la position d’une « région d’intensité nulle » dans le faisceau, ils ont obtenu une ionisation sélective, introduisant un nouveau concept appelé dichroïsme optique.
Les principaux résultats de cette recherche sont les suivants :
- La première démonstration d’une ionisation qui dépend des propriétés des faisceaux lumineux porteurs de moment angulaire.
- Un meilleur contrôle des processus d’ionisation qui pourrait conduire à des avancées dans les techniques d’imagerie au-delà des limites actuelles.
- Une nouvelle compréhension de la façon dont la lumière peut être conçue pour influencer le comportement des électrons de manière inédite.
Ces travaux s’appuient sur des théories fondamentales dans ce domaine et pourraient révolutionner la façon dont les scientifiques abordent l’ionisation. Ce n’est pas seulement pour les manuels de physique – cela pourrait conduire à une meilleure imagerie médicale, à des ordinateurs plus rapides et à des moyens plus efficaces d’étudier les matériaux. Elle est particulièrement prometteuse pour l’informatique quantique, où le contrôle des particules individuelles est crucial.
Le professeur Bhardwaj souligne l’importance de cette percée : « Changer notre façon de penser sur la manière dont les électrons sont éjectés a été un défi, mais notre recherche prouve que l’utilisation de technologies laser avancées peut conduire à de nouvelles découvertes qui ont un impact à la fois sur la science et sur la technologie ».
Légende illustration : GEN AI
La recherche intitulée « Orbital angular momentum control of strong-field ionization in atoms and molecules » a été publiée dans Nature Communications.