Les chercheurs de l’EPFL ont réussi, pour la première fois, à mesurer directement un phénomène insaisissable qui explique en grande partie la naissance d’un éclair : le rayonnement X. Cette découverte offre des informations précieuses sur la formation de la foudre, en particulier sur les éclairs ascendants, et pourrait contribuer à réduire les risques liés à ce phénomène naturel dévastateur.
La foudre, un phénomène dévastateur
À l’échelle mondiale, la foudre est responsable de plus de 4 000 décès et de milliards de dollars de dégâts chaque année. La Suisse, à elle seule, subit jusqu’à 150 000 impacts de foudre par an. Comprendre exactement comment la foudre se forme est essentiel pour réduire les risques, mais en raison de la rapidité des phénomènes liés à la foudre, qui se produisent en quelques millisecondes, il est extrêmement difficile d’obtenir des mesures directes.
Les chercheurs du Laboratoire de compatibilité électromagnétique de l’EPFL, dirigé par Farhad Rachidi, ont enregistré des impacts de foudre sur la tour Säntis, dans le nord-est de la Suisse, identifiant les rayons X associés au début des éclairs ascendants positifs. Ces éclairs commencent par des filaments chargés négativement (leaders) qui montent par étapes depuis un objet situé en altitude, avant de se connecter à un nuage orageux, transférant une charge positive au sol.
Les éclairs ascendants, potentiellement plus dévastateurs
Toma Oregel-Chaumont, doctorant au Laboratoire de compatibilité électromagnétique, explique : « Au niveau de la mer, les éclairs ascendants sont rares, mais ils pourraient devenir le type dominant à haute altitude. Ils ont également le potentiel d’être plus dévastateurs, car lors d’un éclair ascendant, la foudre reste en contact avec une structure plus longtemps que lors d’un éclair descendant, lui laissant plus de temps pour transférer la charge électrique. »
Bien que des émissions de rayons X aient déjà été observées pour d’autres types de foudre, c’est la première fois qu’elles sont capturées à partir d’éclairs ascendants positifs. Oregel-Chaumont, premier auteur d’un récent article paru dans Nature Scientific Reports décrivant ces observations, affirme qu’elles offrent des informations précieuses sur la formation de la foudre, et en particulier de la foudre ascendante.

La tour Säntis, un site d’observation unique
Il n’est peut-être pas surprenant que ces nouvelles observations aient été réalisées en Suisse, car la tour Säntis offre des conditions de mesure uniques et idéales. La tour de 124 mètres est perchée au sommet d’un haut sommet des Alpes d’Appenzell, ce qui en fait une cible privilégiée pour la foudre. Il y a une ligne de vue dégagée depuis les pics voisins, et le vaste centre de recherche est équipé de caméras ultra-rapides, de détecteurs de rayons X, de capteurs de champ électrique et de dispositifs de mesure du courant.
La vitesse et la sensibilité de cet équipement ont permis à l’équipe de voir une différence entre les étapes des leaders négatifs qui émettaient des rayons X et celles qui n’en émettaient pas, soutenant une théorie de la formation de la foudre connue sous le nom de modèle d’électrons froids en fuite. En résumé, l’association des rayons X à des changements très rapides du champ électrique de l’air a conforté la théorie selon laquelle des augmentations soudaines du champ électrique de l’air provoquent la «fuite» des électrons ambiants et leur transformation en plasma : la foudre.
Implications pour la sécurité des structures en altitude
Oregel-Chaumont souligne l’importance de ces informations non seulement d’un point de vue théorique, mais aussi d’un point de vue pratique : « De plus en plus de structures en altitude, comme les éoliennes et les avions, sont construites en matériaux composites. Ces derniers sont moins conducteurs que les métaux comme l’aluminium, ils chauffent donc davantage, ce qui les rend vulnérables aux dégâts causés par la foudre ascendante. »
Les observations à Säntis, qui reçoit plus de 100 impacts de foudre chaque année, se poursuivent. Les scientifiques prévoient d’ajouter un capteur de micro-ondes à l’arsenal d’équipements de la tour, ce qui pourrait aider à déterminer si le modèle d’électrons froids en fuite s’applique également à la foudre descendante, car contrairement aux rayons X, les micro-ondes peuvent être mesurées à partir des nuages.
Références
Oregel-Chaumont, T., Šunjerga, A., Hettiarachchi, P. et al. Direct observations of X-rays produced by upward positive lightning. Sci Rep 14, 8083 (2024). 10.1038/s41598-024-58520-x
Légende illustration : La tour du Säntis dans le nord-est de la Suisse © EMC EPFL CC BY SA