MME2026 728x90
mardi, février 10, 2026
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
Des scientifiques réussissent à observer le mouvement des atomes d'hydrogène

Des scientifiques réussissent à observer le mouvement des atomes d’hydrogène

par La rédaction
12 octobre 2023
en Recherche, Technologie

Des scientifiques ont réussi à observer des atomes d’hydrogène en mouvement rapide, clés de nombreuses réactions biologiques et chimiques. Cette réalisation, qui a été menée par une équipe de chercheurs du Laboratoire national d’accélérateurs SLAC du Département de l’énergie et de l’Université Stanford, a utilisé la diffraction électronique ultra-rapide (UED) pour enregistrer le mouvement des atomes d’hydrogène au sein des molécules d’ammoniac.

Il avait été théorisé que l’on pourrait suivre les atomes d’hydrogène avec la diffraction électronique, mais jusqu’à présent, personne n’avait réussi à réaliser l’expérience avec succès.

Les résultats, publiés dans Physical Review Letters, exploitent les forces des électrons à haute énergie de mégaelectronvolt (MeV) pour étudier les atomes d’hydrogène et les transferts de protons, où le proton singulier qui constitue le noyau d’un atome d’hydrogène passe d’une molécule à une autre.

Les transferts de protons sont à l’origine d’innombrables réactions en biologie et en chimie – pensez aux enzymes, qui aident à catalyser les réactions biochimiques, et aux pompes à protons, qui sont essentielles aux mitochondries, les centrales énergétiques des cellules. Il serait donc utile de savoir exactement comment sa structure évolue pendant ces réactions. Mais les transferts de protons se produisent très rapidement – en quelques femtosecondes, un millionième de milliardième de seconde. Il est difficile de les attraper en action.

Une nouvelle méthode d’observation

Une possibilité est de tirer des rayons X sur une molécule, puis d’utiliser les rayons X diffusés pour en apprendre davantage sur la structure de la molécule au fur et à mesure de son évolution. Hélas, les rayons X n’interagissent qu’avec les électrons – pas avec les noyaux atomiques – donc ce n’est pas la méthode la plus sensible.

Pour obtenir les réponses qu’ils recherchaient, une équipe dirigée par le scientifique du SLAC, Thomas Wolf, a mis au travail MeV-UED, la caméra de diffraction électronique ultra-rapide du SLAC. Ils ont utilisé de l’ammoniac en phase gazeuse, qui a trois atomes d’hydrogène attachés à un atome d’azote.

L’équipe a frappé l’ammoniac avec de la lumière ultraviolette, dissociant, ou brisant, l’une des liaisons hydrogène-azote, puis a tiré un faisceau d’électrons à travers celui-ci et a capturé les électrons diffractés.

Des résultats prometteurs

Non seulement ils ont capté des signaux provenant de l’hydrogène se séparant du noyau d’azote, mais ils ont également capté le changement associé dans la structure de la molécule. De plus, les électrons diffusés ont été projetés à différents angles, de sorte qu’ils ont pu séparer les deux signaux.

« Avoir quelque chose qui est sensible aux électrons et quelque chose qui est sensible aux noyaux dans la même expérience est extrêmement utile », a déclaré Wolf. « Si nous pouvons voir ce qui se passe en premier lorsqu’un atome se dissocie – que ce soient les noyaux ou les électrons qui font le premier mouvement pour se séparer – nous pouvons répondre à des questions sur la façon dont se produisent les réactions de dissociation. »

En synthèse

Avec ces informations, les scientifiques pourraient se rapprocher du mécanisme insaisissable du transfert de protons, ce qui pourrait aider à répondre à une myriade de questions en chimie et en biologie. Savoir ce que font les protons pourrait avoir des implications importantes en biologie structurale, où les méthodes traditionnelles comme la cristallographie aux rayons X et la microscopie électronique cryogénique ont du mal à «voir» les protons.

À l’avenir, le groupe réalisera la même expérience en utilisant des rayons X au laser à rayons X du SLAC, le Linac Coherent Light Source (LCLS), pour voir à quel point les résultats sont différents. Ils espèrent également augmenter l’intensité du faisceau d’électrons et améliorer la résolution temporelle de l’expérience afin de pouvoir réellement résoudre les étapes individuelles de la dissociation du proton au fil du temps.

Articles à explorer

From left to right, Alessio Celi, Leticia Tarruell, and Sarah Hirthe in the Ultracold Quantum Gases lab at ICFO. ©ICFO.

L’imagerie directe capture les vibrations cristallines d’un supra-solide composé d’atomes et de lumière

3 février 2026
With three atomic clouds whose spins (blue) are entangled with each other at a distance, the researchers can measure the

Des mesures quantiques avec des nuages atomiques intriqués

2 février 2026

Pour une meilleure compréhension

Qu’est-ce que la diffraction électronique ultra-rapide (UED) ?

L’UED est une technique qui utilise des électrons à haute énergie pour enregistrer le mouvement des atomes à l’intérieur des molécules. Elle a été utilisée dans cette étude pour observer le mouvement des atomes d’hydrogène au sein des molécules d’ammoniac.

Qu’est-ce qu’un transfert de protons ?

Un transfert de protons est un processus où le proton unique qui constitue le noyau d’un atome d’hydrogène passe d’une molécule à une autre. Ces transferts sont à l’origine de nombreuses réactions en biologie et en chimie.

Pourquoi est-il difficile d’observer les transferts de protons ?

Les transferts de protons se produisent très rapidement, en quelques femtosecondes, soit un millionième de milliardième de seconde. Il est donc difficile de les observer en action.

Comment l’équipe a réussi à observer les atomes d’hydrogène en mouvement ?

L’équipe a utilisé de l’ammoniac en phase gazeuse, qui a trois atomes d’hydrogène attachés à un atome d’azote. Ils ont frappé l’ammoniac avec de la lumière ultraviolette, dissociant l’une des liaisons hydrogène-azote, puis ont tiré un faisceau d’électrons à travers celui-ci et ont capturé les électrons diffractés.

Quelles sont les implications de cette recherche ?

Les résultats pourraient aider les scientifiques à comprendre le mécanisme insaisissable du transfert de protons, ce qui pourrait répondre à de nombreuses questions en chimie et en biologie. Cela pourrait également avoir des implications importantes en biologie structurale, où les méthodes traditionnelles ont du mal à «voir» les protons.

Crédit : Nanna H. List/KTH Royal Institute of Technology. Irradiation de l’ammoniac avec de la lumière ultraviolette provoquant la dissociation d’un hydrogène de l’ammoniac. Les chercheurs du SLAC ont utilisé une « caméra à électrons » ultra-rapide pour observer exactement ce que faisait cet hydrogène lorsqu’il se dissociait.

Physical Review Letters, DOI 10.1103/PhysRevLett.131.143001, « Femtosecond Electronic and Hydrogen Structural Dynamics in Ammonia Imaged with Ultrafast Electron Diffraction »

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: ammoniacatomesBiologie structuraleDiffraction electroniquehydrogeneprotonsTransfertultra-rapide
Article précédent

Des ingénieurs développent des autocollants électroniques pour mesurer la force

Article suivant

Des ions moléculaires éjectés : une première mondiale

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Introducing oxygen groups at graphene pore edges strengthens carbon dioxide (CO 2 ) selectivity over methane (CH 4 ), al
Graphène

Des filtres à graphène modifié à l’oxygène optimisent la purification du gaz naturel

il y a 18 heures
Researchers design novel metal mesh films to develop transparent glass windows with electromagnetic pulse-shielding capa
Industrie militaire

Des fenêtres transparentes qui protègent contre les impulsions électromagnétiques puissantes

il y a 21 heures
LIST at JEC Innovation Awards 2026  
Matériaux

LIST remporte les « Oscars » du monde des composites

il y a 22 heures
Hyperspectral imaging in ORNL’s Advanced Plant Phenotyping Laboratory captures plant biochemical composition beyond visi
Intelligence artificielle

Des scientifiques améliorent un modèle de fondation d’IA pour accélérer la recherche végétale

il y a 23 heures
Various optics, including lenses and mirrors, as well as other test equipment which are used for directing and measuring
Quantique

Une nouvelle plateforme optique pour les superordinateurs quantiques

il y a 1 jour
L'impression 3D sous-marine pourrait révolutionner la construction maritime
Impression

L’impression 3D sous-marine pourrait révolutionner la construction maritime

il y a 2 jours
SEM images of a dangling croissant-shaped microstructure with a 3D curved surface assembled from SiO 2 particles. 
Nanotechnologie

Une technique de micro-nano fabrication 3D de pointe surmonte les limitations matérielles

il y a 2 jours
Close up of an optical amplifier chip, similar to the one detailed in this study, that is being developed in the lab of
Optique

Un amplificateur optique économe en énergie, de la taille d’une puce, peut intensifier la lumière 100 fois.

il y a 2 jours
Plus d'articles
Article suivant
Des ions moléculaires éjectés : une première mondiale

Des ions moléculaires éjectés : une première mondiale

Trois jours de production continue de méthane grâce à la photosynthèse artificielle

Trois jours de production continue de méthane grâce à la photosynthèse artificielle

Le système m-Presa™ : un barrage en acier modulaire pour l'énergie renouvelable

Le système m-Presa™ : un barrage en acier modulaire pour l'énergie renouvelable

MME2026 300x600

Inscription newsletter

Tendance

Jacqueline Degen wants to use a drone and special lightweight transponders to study the flight paths of moths.
Risques

Comment la pollution lumineuse perturbe l’orientation des papillons de nuit

par La rédaction
10 février 2026
0

Les papillons de nuit sont menacés par la pollution lumineuse croissante : les lampadaires et autres sources...

Introducing oxygen groups at graphene pore edges strengthens carbon dioxide (CO 2 ) selectivity over methane (CH 4 ), al

Des filtres à graphène modifié à l’oxygène optimisent la purification du gaz naturel

9 février 2026
Left to right: NTU Professor James Wang, Director, NTU eVTOL Research & Innovation Centre; Professor Ric Parker, Cha

eVTOL Singapour : NTU dévoile son avion électrique au Airshow 2026

9 février 2026
Researchers design novel metal mesh films to develop transparent glass windows with electromagnetic pulse-shielding capa

Des fenêtres transparentes qui protègent contre les impulsions électromagnétiques puissantes

9 février 2026
LIST at JEC Innovation Awards 2026  

LIST remporte les « Oscars » du monde des composites

9 février 2026

Points forts

Des fenêtres transparentes qui protègent contre les impulsions électromagnétiques puissantes

LIST remporte les « Oscars » du monde des composites

Des scientifiques améliorent un modèle de fondation d’IA pour accélérer la recherche végétale

Une nouvelle plateforme optique pour les superordinateurs quantiques

L’impression 3D sous-marine pourrait révolutionner la construction maritime

Une technique de micro-nano fabrication 3D de pointe surmonte les limitations matérielles

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

Jacqueline Degen wants to use a drone and special lightweight transponders to study the flight paths of moths.

Comment la pollution lumineuse perturbe l’orientation des papillons de nuit

10 février 2026
Introducing oxygen groups at graphene pore edges strengthens carbon dioxide (CO 2 ) selectivity over methane (CH 4 ), al

Des filtres à graphène modifié à l’oxygène optimisent la purification du gaz naturel

9 février 2026
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com