Les nanoparticules ultrafines, omniprésentes dans notre environnement quotidien, suscitent un intérêt croissant en raison de leur impact potentiel sur la santé. Des chercheurs de l’Université de technologie d’Eindhoven (TU/e) ont mis au point un nouveau capteur à pointe de fibre ultra-sensible capable de détecter des particules uniques d’un diamètre allant jusqu’à 50 nanomètres.
Les nanoparticules ultrafines (UFP), dont le diamètre est inférieur à 100 nanomètres, sont présentes dans de nombreuses sources telles que la fumée, les gaz d’échappement et même les toners d’imprimante. L’exposition à ces particules peut présenter de graves risques pour la santé, en particulier si elles sont directement inhalées. Une fois dans les poumons, les UFP peuvent absorber les toxines présentes dans l’air environnant et les maintenir dans l’organisme.
La détection précise des UFP est essentielle pour surveiller la qualité de l’air intérieur et prévenir les risques sanitaires associés. Cependant, les méthodes actuelles de détection des UFP nécessitent souvent des équipements volumineux et coûteux, ce qui limite leur utilisation à grande échelle.
Un capteur à pointe de fibre innovant
Pour répondre à ce défi, Arthur Hendriks, chercheur au Département de physique appliquée et d’éducation scientifique de la TU/e, et ses collaborateurs ont développé un capteur nanophotonique à pointe de fibre ultra-sensible. Ce capteur est basé sur un cristal photonique, une structure périodique capable de réfléchir la lumière dans toutes les directions. En introduisant un défaut dans le cristal, appelé cavité de cristal photonique (PhCC), la lumière peut être piégée pendant une période prolongée.
Lorsqu’une nanoparticule s’approche de la PhCC, elle perturbe la cavité en modifiant son indice de réfraction, ce qui entraîne un changement de la longueur d’onde de la lumière piégée. Ce changement est mesuré par le capteur, permettant ainsi la détection en temps réel de particules uniques d’un diamètre aussi faible que 50 nanomètres.

Des perspectives prometteuses
Cette nouvelle approche offre une sensibilité sans précédent par rapport aux technologies existantes. Les chercheurs envisagent d’améliorer encore les performances du capteur en suspendant les cavités, ce qui pourrait conduire à des cavités nanophotoniques aux caractéristiques inégalées.
Au-delà de la détection des UFP, cette technologie pourrait trouver des applications dans d’autres domaines, tels que les émetteurs à photon unique, les capteurs nano-optomécaniques et même la détection de molécules biologiques individuelles.
Le capteur d’UFP sera prochainement utilisé dans le cadre du projet européen LEARN, qui vise à contrôler et évaluer la qualité de l’air dans les écoles, en collaboration avec le groupe Microsystèmes de la TU/e. Cette avancée technologique ouvre de nouvelles perspectives pour la surveillance de la qualité de l’air intérieur et la protection de la santé publique.
Le document complet intitulé : “Detecting single nanoparticles using fiber-tip nanophotonics”.