Face à l’intermittence des sources d’énergie solaire et aux fluctuations de la demande électrique, les systèmes hybrides émergent comme une réponse technologique innovante. Une collaboration internationale menée par une institution espagnole a récemment présenté un dispositif unique qui allie production photovoltaïque et stockage moléculaire thermique. Cette solution pourrait redéfinir les approches actuelles en matière de gestion énergétique.
Une équipe de recherche internationale pilotée par le professeur Kasper Moth-Poulsen, affilié à l’ICREA et au département de génie chimique de l’Universitat Politècnica de Catalunya (UPC), a mis au point un système unique. Le dispositif combine une cellule solaire en silicium avec une technologie appelée MOST, pour molecular solar thermal energy storage systems. L’intégration réussie de ces deux technologies marque une étape significative dans le domaine du stockage d’énergie renouvelable.
Les travaux ont été publiés dans la revue scientifique Joule, où l’équipe a détaillé leur processus expérimental. «Nous avons réussi à combiner efficacement deux modes de gestion énergétique», a expliqué Kasper Moth-Poulsen, ajoutant que cette synergie permet non seulement de produire de l’électricité mais aussi de stocker de l’énergie sous forme chimique.
Principe et fonctionnement du système MOST
Le système MOST repose sur des molécules organiques capables de subir une transformation chimique lorsqu’elles sont exposées à des photons à haute énergie, tels que ceux issus de la lumière ultraviolette. Ces molécules captent l’énergie lumineuse et la conservent sous forme chimique jusqu’à ce qu’elle soit nécessaire. Ce mécanisme se distingue par son rôle double : il assure le stockage tout en protégeant la cellule photovoltaïque contre les effets néfastes liés à la chaleur.
En agissant comme un filtre optique, les molécules bloquent les photons responsables de l’échauffement excessif des cellules solaires. Cet effet de refroidissement permet de réduire la température des cellules photovoltaïques de manière notable, abaissant ainsi les pertes énergétiques dues à la chaleur. Selon les données expérimentales, une baisse de 8 °C a été observée, entraînant une augmentation de 12,6 % de l’efficacité énergétique globale.

Performances énergétiques exceptionnelles
Les tests réalisés sur le dispositif hybride ont montré des résultats remarquables. Un rendement de stockage énergétique de 2,3 % a été atteint pour l’énergie thermique moléculaire solaire, tandis que l’utilisation totale de l’énergie solaire s’est élevée à 14,9 %. Ces chiffres traduisent une optimisation significative par rapport aux performances des systèmes photovoltaïques ou de stockage utilisés séparément.
Cette amélioration des performances s’accompagne d’une réduction notable de la dépendance aux matériaux rares ou polluants. Contrairement aux batteries traditionnelles, qui reposent souvent sur des ressources non durables, le système MOST utilise des éléments abondants tels que le carbone, l’hydrogène, l’oxygène et l’azote. Une caractéristique qui renforce son attrait écologique.
Impacts environnementaux et perspectives économiques
Le développement de ce dispositif a bénéficié d’un financement européen substantiel, avec des contributions provenant des projets ERC PHOTHERM et EU FET-PROACT MOST, respectivement dotés de 2 millions et 4,3 millions d’euros. Des chercheurs issus de prestigieuses institutions telles que l’Université de Cambridge, l’Institut des Sciences des Matériaux de Barcelone (ICMAB-CSIC) et l’Université de Technologie de Chalmers ont collaboré à cette initiative.
En intégrant la production d’électricité et le stockage chimique, ce système pourrait contribuer à diminuer la dépendance aux combustibles fossiles. De plus, son impact environnemental est atténué grâce à l’utilisation de matériaux communs et durables. La transition vers des solutions énergétiques plus propres semble ainsi bénéficier d’un nouvel outil technologique performant.
Légende illustration : Dispositif hybride MOST-PV. Photo : Paulius Baronas
Article : ‘Hybrid solar energy device for simultaneous electric power generation and molecular solar thermal energy storage’ – Journal Joule – DOI: S2542-4351%2824%2900288-5