Les électrons se déplacent généralement à grande vitesse, traversant la matière sans être liés.Dans les années 1930, le physicien Eugene Wigner a prédit que les électrons pouvaient être contraints à l’immobilité à des densités faibles et à des températures froides, formant une glace d’électrons que l’on appellera plus tard le cristal de Wigner.
Quatre-vingt-dix ans plus tard, en 2021, une équipe dirigée par Feng Wang et Michael Crommie, chercheurs principaux du Berkeley Lab dans la division des sciences des matériaux et professeurs de physique à l’université de Berkeley, a apporté la preuve directe de l’existence de ces cristaux d’électrons.
Aujourd’hui, Wang, Crommie et leurs équipes ont capturé des images directes d’une nouvelle phase quantique d’un solide électronique : le cristal moléculaire de Wigner. Leurs conclusions ont été publiées dans la revue Science.
Alors que les cristaux de Wigner ou la glace d’électrons se caractérisent par un arrangement en nid d’abeilles des électrons, les cristaux moléculaires de Wigner présentent un motif très ordonné de « molécules » artificielles composées de deux électrons ou plus.
« Nous sommes les premiers à observer directement cette nouvelle phase quantique, qui était tout à fait inattendue », a indiqué M. Wang. « C’est très excitant. »
Pendant de nombreuses années, les scientifiques ont essayé de capturer des images directes du cristal moléculaire de Wigner, mais leurs progrès ont été entravés par la tendance de la pointe du STM à détruire la configuration électronique du matériau.
Dans la nouvelle étude, les chercheurs du Berkeley Lab ont surmonté cet obstacle en minimisant le champ électrique de la pointe du STM, ce qui leur a permis de voir la structure électronique délicate du cristal moléculaire de Wigner.
Au cours des expériences menées dans le laboratoire de Wang, ils ont formé un nanomatériau appelé « super-réseau moiré torsadé de disulfure de tungstène (tWS2) » en plaçant une bicouche atomiquement fine de disulfure de tungstène (WS2) au-dessus d’une couche de 49 nanomètres d’épaisseur de hBN (nitrure de bore hexagonal) et d’une porte arrière en graphite. Les couches de WS2 sont empilées les unes sur les autres avec un angle de torsion de 58 degrés.
Grâce à leur technique STM, ils ont découvert que le dopage du super-réseau moiré tWS2 avec des électrons remplissait chaque cellule unitaire de 10 nanomètres de large du matériau avec seulement deux ou trois électrons. Résultat surprenant, ces cellules unitaires remplies formaient un réseau de molécules d’électrons moirés dans tout le super-réseau, ce qui donnait un cristal moléculaire de Wigner.
« Les basses températures et le potentiel énergétique créé par le super-réseau moiré tWS2 confinent les électrons localement », explique Wang, qui ajoute que « l’interaction entre la mécanique quantique et l’interaction électron-électron conduit les électrons localisés à l’état de molécule de Wigner ».
Lors de futures expériences, Wang, Crommie et leur équipe espèrent utiliser leur nouvelle technique STM pour mieux comprendre cette nouvelle phase quantique et voir à quelles applications potentielles elle pourrait conduire.
Légende illustration : En haut à gauche : Images au microscope à effet tunnel d’électrons évoluant en une seule molécule de Wigner (en bas à droite). Crédit : Berkeley Lab
Article : « Wigner molecular crystals from multielectron moiré artificial atoms » – DOI: 10.1126/science.adk1348
Source : Berkeley Lab – Traduction Enerzine.com