Des chercheurs néerlandais ont mis au point une méthode innovante pour visualiser les structures microscopiques sur les puces électroniques. Cette technique, appelée imagerie diffractive, pourrait améliorer la production de semi-conducteurs en détectant plus efficacement les défauts de fabrication. Elle utilise une source de lumière ultraviolette extrême (EUV) compacte et des algorithmes avancés pour reconstruire des images détaillées sans système optique coûteux. Cette avancée promet de réduire les coûts et d’accélérer le contrôle qualité dans la fabrication des puces.
La fabrication de puces électroniques modernes repose sur la capacité à créer et visualiser des structures extrêmement petites. Les machines appelées scanners de lithographie utilisent la lumière pour « dessiner » les circuits sur les puces. Plus la longueur d’onde de la lumière utilisée est courte, plus les structures peuvent être fines et nombreuses.
Actuellement, la technologie de pointe utilise la lithographie EUV pour atteindre des densités impressionnantes. Comme l’explique le résumé de l’étude de l’université technologique de Delft : « Grâce à la lithographie EUV, la technologie de pointe actuelle de 3 nm a atteint plus de 200 millions de transistors par mm2. »
Cependant, vérifier la qualité de ces structures minuscules pose un défi majeur. Les méthodes traditionnelles d’inspection sont soit trop lentes, soit trop coûteuses pour une utilisation industrielle à grande échelle.
Une nouvelle approche : l’imagerie diffractive
Pour surmonter les limitations des microscopes EUV traditionnels, les chercheurs ont développé une technique alternative appelée imagerie diffractive. Cette méthode élimine le besoin d’un système optique complexe en utilisant des calculs intensifs pour reconstruire l’image de l’échantillon.
Le principe est le suivant :
- Un faisceau de lumière EUV est projeté sur l’échantillon
- La lumière réfléchie par l’échantillon se disperse dans l’espace
- Une caméra spéciale capture les motifs de dispersion résultants
- Un algorithme puissant reconstruit l’image de l’échantillon à partir de ces motifs

Une source EUV compacte et innovante
Un élément clé de cette technique est l’utilisation d’une source de lumière EUV compacte, adaptée à un environnement industriel. Les chercheurs ont utilisé un procédé appelé génération d’harmoniques élevées (HHG) pour produire la lumière EUV. Cette technologie permet de générer des impulsions EUV à partir d’un laser infrarouge puissant.
L’étude souligne l’efficacité limitée de ce processus : « Un laser de 100 W ne génère qu’environ 1 μW de rayonnement EUV (1011 photons EUV par seconde) au niveau du jet de gaz, soit un taux de conversion très faible de 10-8 ! On peut donc dire que chaque photon EUV généré par HHG est précieux.
Cette faible efficacité est compensée par la précision et la qualité des images obtenues.
Un processus de mesure par balayage
Pour obtenir une image complète de l’échantillon, le faisceau EUV est déplacé sur sa surface. À chaque position, un motif de diffraction est enregistré. Cette technique, appelée ptychographie, permet de reconstruire une zone bidimensionnelle de l’échantillon à chaque position, plutôt qu’un seul point comme dans d’autres techniques de microscopie à balayage.
Un algorithme de reconstruction puissant
La reconstruction de l’image à partir des motifs de diffraction nécessite un algorithme sophistiqué. Les chercheurs ont utilisé des technologies issues de l’intelligence artificielle pour optimiser ce processus. Comme ils l’expliquent :
« Nous utilisons une technologie de différenciation automatique (AD), qui nous permet d’adopter une conception modulaire de l’algorithme. […] L’AD est supérieure à la différenciation par dérivation manuelle et par différence finie car elle peut réduire considérablement les efforts humains et les erreurs numériques. »

Les avantages de l’imagerie diffractive
Cette nouvelle technique d’imagerie présente plusieurs avantages par rapport aux méthodes traditionnelles :
1. Rapidité : La ptychographie peut reconstruire des millions de points d’image à chaque position de balayage, ce qui la rend beaucoup plus rapide que les techniques concurrentes.
2. Flexibilité : La zone observée peut être étendue indéfiniment par balayage, sans erreurs de raccordement.
3. Précision : L’algorithme peut calibrer les incertitudes expérimentales avec une précision inférieure au milliardième de mètre.
4. Coût : En éliminant le besoin d’un système optique EUV complexe, cette approche pourrait être plus économique pour l’industrie des semi-conducteurs.
Un intérêt pour l’industrie des semi-conducteurs
L’imagerie diffractive EUV pourrait devenir un outil précieux pour l’inspection des puces électroniques de nouvelle génération. En permettant une détection rapide et précise des défauts de fabrication, elle pourrait contribuer à améliorer les rendements de production et à réduire les coûts.
À mesure que la technologie des semi-conducteurs continue de progresser vers des structures toujours plus petites, des techniques d’imagerie innovantes comme celle-ci joueront un rôle crucial pour maintenir le rythme des avancées dans ce domaine.
Article : « Wavelength-multiplexed multi-mode EUV reflection ptychography based on automatic differentiation » – DOI: 10.1038/s41377-024-01558-3