L’industrie nucléaire pourrait connaître un bouleversement d’envergure grâce aux technologies de fabrication additive. Un projet de recherche ambitieux explore l’utilisation de l’impression 3D pour la création de composants essentiels aux réacteurs, ouvrant de nouvelles possibilités pour l’avenir de l’énergie propre.
Une subvention de 1 million de dollars sur quatre ans a été accordée par le Département de l’Énergie des États-Unis au professeur Sougata Roy de l’Université d’État de l’Iowa. Leur recherche novatrice vise à étudier les possibilités offertes par la fabrication additive, communément appelée impression 3D, pour la création de boucliers et de composants destinés aux réacteurs nucléaires.
Le professeur Roy a souligné l’importance de ce projet : «L’un des aspects les plus stimulants de ce projet est de travailler avec l’énergie nucléaire. Il s’agit de la plus importante source d’énergie propre aux États-Unis. Cette électricité sans émissions est essentielle pour l’avenir.»
D’après les données fournies par l’Administration américaine d’information sur l’énergie, environ 19% de l’électricité produite aux États-Unis provient de l’énergie nucléaire, tandis que les éoliennes du pays fournissent approximativement 10% de la production totale.

Une équipe de recherche pluridisciplinaire
Le projet, baptisé DREAM-TEAM (Developing a Robust Ecosystem for Additive Manufacturing of Tungsten for Extreme Applications and Management), rassemble une équipe de chercheurs de haut niveau. Cette collaboration interdisciplinaire est dirigée par le professeur Roy et inclut Yachao Wang, professeur assistant de génie mécanique à l’Université du Dakota du Nord, ainsi que des chercheurs de trois laboratoires nationaux du Département de l’Énergie : Ames National Laboratory, Argonne National Laboratory et Oak Ridge National Laboratory.
La subvention s’inscrit dans le cadre d’un effort plus large de 36 millions de dollars du programme EPSCoR (Established Program to Stimulate Competitive Research) du Département de l’Énergie. L’objectif principal de ce programme est de développer les capacités et l’expertise en matière de recherche énergétique à travers le pays.
Les efforts des chercheurs se concentrent sur le tungstène, un matériau considéré comme un candidat idéal pour les parois internes des réacteurs à fusion. Le tungstène présente des propriétés remarquables : il conserve sa résistance à haute température, possède un point de fusion élevé, résiste à l’érosion sous irradiation neutronique à haute énergie et retient de faibles niveaux de tritium radioactif.
Le professeur Roy a mis en lumière un défi majeur : «Le tungstène est coûteux à travailler pour les fabricants conventionnels en raison de sa dureté et de sa fragilité.» C’est pour cette raison que l’équipe de recherche se tourne vers des méthodes de traitement non conventionnelles.
L’impression 3D au service de l’innovation nucléaire
La technologie d’impression 3D connue sous le nom de dépôt d’énergie dirigée par laser à poudre soufflée sera utilisée par l’équipe. Ce procédé innovant implique l’utilisation d’un laser dans des conditions contrôlées en oxygène pour traiter la poudre de tungstène et imprimer le métal couche par couche.
Le professeur Roy, fort de son expérience dans l’impression 3D d’autres alliages à base d’acier pour des applications dans l’énergie nucléaire, a expliqué : «Le projet nous permettra d’acquérir un nouvel instrument pour caractériser les propriétés mécaniques des échantillons imprimés, notamment les caractéristiques d’indentation instrumentée et la ténacité à la rupture.»
L’aspect le plus unique du projet ne réside pas dans l’impression elle-même, mais dans la modélisation basée sur la physique et les simulations informatiques du processus d’impression qui compléteront le travail expérimental.
La modélisation et les simulations, qui incluront l’utilisation d’outils d’apprentissage automatique et d’intelligence artificielle, aideront les chercheurs à établir les théories sous-jacentes à leurs résultats expérimentaux. Ces simulations avancées permettront également de développer des formules pour des alliages de tungstène capables de résister aux conditions extrêmes à l’intérieur d’un réacteur nucléaire.
Le professeur Roy a précisél’approche adoptée : «Nous commencerons avec du tungstène pur. Progressivement, nous développerons de nouveaux alliages pour résoudre ce défi de fissuration.»
En conclusion, le professeur Roy a insisté sur l’importance du travail d’équipe dans ce projet ambitieux : «Il s’agit d’une véritable DREAM-TEAM. Un projet de cette envergure ne peut être réalisé seul.»
Légende illustration : Sougata Roy dirige un projet visant à explorer de nouvelles méthodes de traitement du tungstène en vue de son utilisation dans les réacteurs nucléaires. Crédit : Christopher Gannon.
Source : Iowa State University