Les transferts d’électrons à l’échelle nanométrique ouvrent de nouvelles perspectives pour la conception de matériaux multifonctionnels. Une équipe de chercheurs de l’Université des Sciences de Tokyo a récemment réalisé une avancée significative dans l’observation directe de ces transferts, offrant des perspectives prometteuses pour divers domaines technologiques.
Le transfert d’électrons : un processus fondamental
Le transfert d’électrons (ET) consiste en la transmission d’un électron d’un atome ou d’une molécule à un autre. Ce processus est essentiel pour les réactions électrochimiques et trouve des applications dans de nombreux domaines. À l’échelle nanométrique, le transfert d’électrons, qui se produit dans une plage de 1 à 100 nanomètres dans les solides, est crucial pour la conception de matériaux multifonctionnels. Cependant, ce processus reste encore mal compris.
Les nanotubes, des nanomatériaux aux structures cylindriques uniques, offrent diverses propriétés de transfert d’électrons. Ces propriétés peuvent être exploitées par l’injection d’électrons et de trous (espaces vacants laissés par les électrons) dans les nanotubes, les rendant ainsi adaptés à l’étude du transfert d’électrons à l’échelle nanométrique. Bien que les nanotubes à base de carbone présentent des propriétés fascinantes, leur contrôle en termes de forme et de taille reste difficile en raison des conditions extrêmes, telles que les hautes températures, nécessaires à leur synthèse.
Une approche innovante pour la fabrication de nanotubes
Une approche viable pour fabriquer des nanotubes bien définis et modulables est la fabrication ascendante de nanotubes non covalents, qui aboutit parfois à des nanotubes sous forme cristalline. Les nanotubes non covalents se forment grâce aux interactions attractives inhérentes ou aux interactions non covalentes entre les atomes, contrairement aux interactions covalentes fortes observées dans les nanotubes de carbone. Cependant, ces nanotubes ne sont pas assez robustes pour supporter les injections d’électrons et de trous, ce qui peut briser leurs interactions non covalentes et détruire leur structure cristalline.
Dans une étude récente, une équipe de chercheurs du Département de Chimie Appliquée de l’Université des Sciences de Tokyo, dirigée par le Professeur Junpei Yuasa et comprenant le Dr Daiji Ogata, M. Shota Koide et M. Hiroyuki Kishi, a utilisé une approche novatrice pour observer directement le transfert d’électrons à l’état solide.
Le Professeur Yuasa explique : « Nous avons développé des nanotubes cristallins avec une structure spéciale à double paroi. En incorporant des molécules donneuses d’électrons dans les pores de ces nanotubes cristallins par une réaction d’oxydation à l’état solide, nous avons réussi à observer directement la réaction de transfert d’électrons dans le solide en utilisant l’analyse de la structure cristalline par rayons X. » Leurs résultats ont été publiés dans la revue Nature Communications le 23 mai 2024.

Une méthode de cristallisation supramoléculaire
Les chercheurs ont utilisé une méthode de cristallisation supramoléculaire novatrice, impliquant une cristallisation basée sur l’oxydation, pour fabriquer des nanotubes cristallins à double paroi à base de zinc. Cette structure à double paroi, dotée de grandes fenêtres dans les parois des nanotubes, rend le cristal robuste et flexible, capable de maintenir son état cristallin lorsqu’il est soumis à des processus d’oxydation par transfert d’électrons. De plus, cette structure permet au cristal d’absorber des molécules donneuses d’électrons.
Les chercheurs ont utilisé le ferrocène et la tétrathiafulvalène comme molécules donneuses d’électrons, qui ont été absorbées par les fenêtres des cristaux de nanotubes. Cela permet de retirer des électrons des donneurs d’électrons absorbés par des réactions d’oxydation par transfert d’électrons à l’état solide, entraînant l’accumulation de trous dans les donneurs à l’intérieur du nanotube. Grâce à la robustesse des cristaux, les chercheurs ont pu observer directement ce processus d’oxydation par transfert d’électrons en utilisant l’analyse de la structure cristalline par rayons X, révélant des informations clés.
Applications potentielles et perspectives
Cette approche novatrice est extrêmement précieuse pour l’observation directe du transfert d’électrons dans les nanomatériaux solides. En soulignant les applications potentielles de cette étude, le Professeur Yuasa ajoute : « Comprendre le transfert d’électrons peut conduire au développement de nouveaux matériaux fonctionnels, ce qui peut à son tour permettre la conception de semi-conducteurs, de transistors et d’autres dispositifs électroniques plus efficaces. Les dispositifs optoélectroniques, tels que les cellules solaires, dépendent fortement du transfert d’électrons. Par conséquent, l’observation directe du transfert d’électrons peut aider à améliorer les performances de ces dispositifs. De plus, cette approche peut conduire à des avancées dans le stockage d’énergie, la nanotechnologie et la recherche en science des matériaux. »
Article : « Direct observation of electron transfer in solids through X-ray crystallography » – DOI: 10.1038/s41467-024-48599-1